Performance Optimization¶
Guidelines for optimizing Amebo performance in production environments.
Performance Targets¶
- Response Time: < 10ms (p95)
- Throughput: 1000+ events/second per instance
- Error Rate: < 0.1%
- Availability: 99.9%
Configuration Tuning¶
Application Settings¶
{
"AMEBO_ENVELOPE": 512, // Increase batch size for higher throughput
"AMEBO_IDLES": 3, // Reduce idle time for better responsiveness
"AMEBO_REST_WHEN": 10 // Adjust rest threshold based on load
}
Database Optimization¶
-- PostgreSQL performance settings
ALTER SYSTEM SET shared_buffers = '256MB';
ALTER SYSTEM SET effective_cache_size = '1GB';
ALTER SYSTEM SET maintenance_work_mem = '64MB';
ALTER SYSTEM SET checkpoint_completion_target = 0.9;
ALTER SYSTEM SET wal_buffers = '16MB';
SELECT pg_reload_conf();
Monitoring Performance¶
Key Metrics¶
# Application metrics to monitor
- Request rate (requests/second)
- Response time (p50, p95, p99)
- Error rate (%)
- Event processing rate
- Webhook delivery success rate
- Database connection pool usage
- Memory usage
- CPU utilization
Performance Testing¶
# Load testing with Apache Bench
ab -n 10000 -c 100 -H "Authorization: Bearer TOKEN" \
-p event.json -T application/json \
http://localhost/v1/events
# Load testing with wrk
wrk -t12 -c400 -d30s --script=post-event.lua http://localhost/v1/events
Scaling Strategies¶
Horizontal Scaling¶
# Docker Compose scaling
docker-compose up -d --scale amebo=5
# Kubernetes scaling
kubectl scale deployment amebo --replicas=5
Vertical Scaling¶
Database Performance¶
Connection Pooling¶
# Optimize connection pool settings
DATABASE_POOL_SIZE = 20
DATABASE_MAX_OVERFLOW = 30
DATABASE_POOL_TIMEOUT = 30
Query Optimization¶
-- Add indexes for common queries
CREATE INDEX idx_events_action ON events(action);
CREATE INDEX idx_events_timestamp ON events(timestamped);
CREATE INDEX idx_subscriptions_action ON subscriptions(action);
Caching Strategies¶
Application-Level Caching¶
from functools import lru_cache
@lru_cache(maxsize=1000)
def get_action_schema(action_name):
"""Cache action schemas for validation"""
return database.get_action_schema(action_name)
Database Query Caching¶
Best Practices¶
- Monitor continuously: Set up comprehensive monitoring
- Test regularly: Regular performance testing
- Optimize queries: Use EXPLAIN ANALYZE for slow queries
- Scale proactively: Scale before hitting limits
- Cache wisely: Cache frequently accessed data
Troubleshooting Performance Issues¶
High Response Times¶
- Check database query performance
- Monitor connection pool usage
- Verify adequate resources
- Check for lock contention
Low Throughput¶
- Increase batch size (AMEBO_ENVELOPE)
- Add more instances
- Optimize database queries
- Check network latency
Memory Issues¶
- Monitor for memory leaks
- Adjust garbage collection settings
- Optimize data structures
- Check for large payloads