Scaling Guide¶
Strategies and best practices for scaling Amebo to handle increased load and ensure high availability.
Scaling Strategies¶
Horizontal Scaling¶
Add more Amebo instances:
# Scale with Docker Compose
docker-compose up -d --scale amebo=5
# Kubernetes scaling
kubectl scale deployment amebo --replicas=5
Vertical Scaling¶
Increase resources per instance:
Database Scaling¶
- Read replicas for query distribution
- Connection pooling optimization
- Database sharding strategies
Load Balancing¶
Nginx Configuration¶
upstream amebo_backend {
least_conn;
server amebo-1:3310 max_fails=3 fail_timeout=30s;
server amebo-2:3310 max_fails=3 fail_timeout=30s;
server amebo-3:3310 max_fails=3 fail_timeout=30s;
}
Health Checks¶
Ensure load balancer only routes to healthy instances:
location /health {
proxy_pass http://amebo_backend/health;
proxy_connect_timeout 5s;
proxy_read_timeout 5s;
}
Performance Optimization¶
Configuration Tuning¶
Database Optimization¶
-- Increase connection limits
ALTER SYSTEM SET max_connections = 500;
-- Optimize memory settings
ALTER SYSTEM SET shared_buffers = '512MB';
ALTER SYSTEM SET effective_cache_size = '2GB';
Monitoring at Scale¶
Key Metrics¶
- Requests per second across all instances
- Response time distribution
- Error rates by instance
- Resource utilization trends
Auto-scaling¶
# Kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: amebo-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: amebo
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Best Practices¶
Capacity Planning¶
- Baseline performance testing
- Load testing with realistic scenarios
- Monitor growth trends
- Plan for peak loads
Deployment Strategies¶
- Blue-green deployments
- Rolling updates
- Canary releases
- Circuit breaker patterns
Data Management¶
- Event retention policies
- Archive old events
- Optimize database indexes
- Regular maintenance tasks